New sharp inequalities for approximating the factorial function and the digamma function
نویسندگان
چکیده
منابع مشابه
Sharp Inequalities for the Psi Function and Harmonic Numbers
In this paper, two sharp inequalities for bounding the psi function ψ and the harmonic numbers Hn are established respectively, some results in [I. Muqattash and M. Yahdi, Infinite family of approximations of the Digamma function, Math. Comput. Modelling 43 (2006), 1329–1336.] are improved, and some remarks are given.
متن کاملSharp inequalities for tangent function with applications
In the article, we present new bounds for the function [Formula: see text] on the interval [Formula: see text] and find sharp estimations for the Sine integral and the Catalan constant based on a new monotonicity criterion for the quotient of power series, which refine the Redheffer and Becker-Stark type inequalities for tangent function.
متن کاملSharp Weighted Inequalities for the Vector–valued Maximal Function
We prove in this paper some sharp weighted inequalities for the vector–valued maximal function Mq of Fefferman and Stein defined by Mqf(x) = ( ∞ ∑ i=1 (Mfi(x)) q )1/q , where M is the Hardy–Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < ∞ there exists a constant C such that ∫ Rn Mqf(x) p w(x)dx ≤ C ∫ Rn |f(x)|qM [ p q ]+1 w(x)d...
متن کاملTranscendental values of the digamma function
Let ψ(x) denote the digamma function, that is, the logarithmic derivative of Euler’s -function. Let q be a positive integer greater than 1 and γ denote Euler’s constant. We show that all the numbers ψ(a/q)+ γ, (a, q)= 1, 1 a q, are transcendental. We also prove that at most one of the numbers γ, ψ(a/q), (a, q)= 1, 1 a q, is algebraic. © 2007 Elsevier Inc. All rights reserved. MSC: primary 11J81...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2010
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2010.217